Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add filters

Language
Document Type
Year range
1.
biorxiv; 2021.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2021.03.04.433768

ABSTRACT

Since the start of the coronavirus disease-2019 (COVID-19) pandemic, severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) has caused more than 2 million deaths worldwide. Many vaccines have been deployed to date, but the continual evolution of the viral receptor-binding domain (RBD) has recently challenged their efficacy. In particular, SARS-CoV-2 variants originating in the U.K. (B.1.1.7), South Africa (B.1.351) and New York (B.1.526) have reduced neutralization activity from convalescent sera and compromised the efficacy of some antibody cocktails that received emergency use authorization. Whereas vaccines can be updated periodically to account for emerging variants, complementary strategies are urgently needed to avert viral escape. One potential alternative is the use of camelid VHHs (also known as nanobodies), which due to their small size can recognize protein domains that are often inaccessible to conventional antibodies. Here, we isolate anti-RBD nanobodies from llamas and nanomice we engineered to produce VHHs cloned from alpacas, dromedaries and camels. Through binding assays and cryo-electron microscopy, we identified two sets of highly neutralizing nanobodies. The first group expresses VHHs that circumvent RBD antigenic drift by recognizing a region outside the ACE2-binding site that is conserved in coronaviruses but is not typically targeted by monoclonal antibodies. The second group is almost exclusively focused to the RBD-ACE2 interface and fails to neutralize pseudoviruses carrying the E484K or N501Y substitutions. Notably however, they do neutralize the RBD variants when expressed as homotrimers, rivaling the most potent antibodies produced to date against SARS-CoV-2. These findings demonstrate that multivalent nanobodies overcome SARS-CoV-2 variant mutations through two separate mechanisms: enhanced avidity for the ACE2 binding domain, and recognition of conserved epitopes largely inaccessible to human antibodies. Therefore, while new SARS-CoV-2 mutants will continue to emerge, nanobodies represent promising tools to prevent COVID-19 mortality when vaccines are compromised.


Subject(s)
Coronavirus Infections , COVID-19
2.
biorxiv; 2020.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2020.11.03.367391

ABSTRACT

Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) has infected 78 million individuals and is responsible for over 1.7 million deaths to date. Infection is associated with development of variable levels of antibodies with neutralizing activity that can protect against infection in animal models. Antibody levels decrease with time, but the nature and quality of the memory B cells that would be called upon to produce antibodies upon re-infection has not been examined. Here we report on the humoral memory response in a cohort of 87 individuals assessed at 1.3 and 6.2 months after infection. We find that IgM, and IgG anti-SARS-CoV-2 spike protein receptor binding domain (RBD) antibody titers decrease significantly with IgA being less affected. Concurrently, neutralizing activity in plasma decreases by five-fold in pseudotype virus assays. In contrast, the number of RBD-specific memory B cells is unchanged. Memory B cells display clonal turnover after 6.2 months, and the antibodies they express have greater somatic hypermutation, increased potency and resistance to RBD mutations, indicative of continued evolution of the humoral response. Analysis of intestinal biopsies obtained from asymptomatic individuals 4 months after coronavirus disease-2019 (COVID-19) onset, using immunofluorescence, or polymerase chain reaction, revealed persistence of SARS-CoV-2 nucleic acids and immunoreactivity in the small bowel of 7 out of 14 volunteers. We conclude that the memory B cell response to SARS-CoV-2 evolves between 1.3 and 6.2 months after infection in a manner that is consistent with antigen persistence.


Subject(s)
COVID-19
3.
biorxiv; 2020.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2020.09.15.298067

ABSTRACT

SARS-CoV-2, the causative agent of COVID-19, is responsible for over 24 million infections and 800,000 deaths since its emergence in December 2019. There are few therapeutic options and no approved vaccines. Here we examine the properties of highly potent human monoclonal antibodies (hu-mAbs) in a mouse adapted model of SARS-CoV-2 infection (SARS-CoV-2 MA). In vitro antibody neutralization potency did not uniformly correlate with in vivo activity, and some hu-mAbs were more potent in combination in vivo. Analysis of antibody Fc regions revealed that binding to activating Fc receptors is essential for optimal protection against SARS-CoV-2 MA. The data indicate that hu-mAb protective activity is dependent on intact effector function and that in vivo testing is required to establish optimal hu-mAb combinations for COVID-19 prevention.


Subject(s)
COVID-19
4.
biorxiv; 2020.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2020.09.09.288555

ABSTRACT

SARS-CoV-2 primarily infects cells at mucosal surfaces. Serum neutralizing antibody responses are variable and generally low in individuals that suffer mild forms of the illness. Although potent IgG antibodies can neutralize the virus, less is known about secretory antibodies such as IgA that might impact the initial viral spread and transmissibility from the mucosa. Here we characterize the IgA response to SARS-CoV-2 in a cohort of 149 individuals. IgA responses in plasma generally correlate with IgG responses and clones of IgM, IgG and IgA producing B cells that are derived from common progenitors are evident. Plasma IgA monomers are 2-fold less potent than IgG equivalents. However, IgA dimers, the primary form in the nasopharynx, are on average 15 times more potent than IgA monomers. Thus, secretory IgA responses may be particularly valuable for protection against SARS-CoV-2 and for vaccine efficacy.

5.
medrxiv; 2020.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2020.08.05.20169128

ABSTRACT

Abstract Objectives:To investigate longitudinal trajectory of SARS-CoV-2 neutralising antibodies and the performance of serological assays in diagnosing prior infection and predicting serum neutralisation titres with time Design Retrospective longitudinal analysis of a COVID19 case cohort . Setting NHS outpatient clinics Participants Individuals with RT-PCR diagnosed SARS-CoV-2 infection that did not require hospitalization Main outcome measures The sensitivity with which prior infection was detected and quantitative antibody titres were assessed using four SARS-CoV-2 serologic assay platforms. Two platforms employed SARS-CoV-2 spike (S) based antigens and two employed nucleocapsid (N) based antigens. Serum neutralising antibody titres were measured using a validated pseudotyped virus SARS-CoV-2 neutralisation assay. The ability of the serological assays to predict neutralisation titres at various times after PCR diagnosis was assessed. Results The three of the four serological assays had sensitivities of 95 to100% at 21-40 days post PCR-diagnosis, while a fourth assay had a lower sensitivity of 85%. The relative sensitivities of the assays changed with time and the sensitivity of one assay that had an initial sensitivity of >95% declined to 85% at 61-80 post PCR diagnosis, and to 71% at 81-100 days post diagnosis. Median antibody titres decreased in one serologic assay but were maintained over the observation period in other assays. The trajectories of median antibody titres measured in serologic assays over this time period were not dependent on whether the SARS-CoV-2 N or S proteins were used as antigen source. A broad range of SARS-CoV-2 neutralising titres were evident in individual sera, that decreased over time in the majority of participants; the median neutralisation titre in the cohort decreased by 45% over 4 weeks. Each of the serological assays gave quantitative measurements of antibody titres that correlated with SARS-CoV-2 neutralisation titres, but, the S-based serological assay measurements better predicted serum neutralisation potency. The strength of correlation between serologic assay results and neutralisation titres deteriorated with time and decreases in neutralisation titres in individual participants were not well predicted by changes in antibody titres measured using serologic assays. Conclusions: SARS-CoV-2 serologic assays differed in their comparative diagnostic performance over time. Different assays are more or less well suited for surveillance of populations for prior infection versus prediction of serum neutralisation potency. Continued monitoring of declining neutralisation titres during extended follow up should facilitate the establishment of appropriate serologic correlates of protection against SARS-CoV-2 reinfection.


Subject(s)
COVID-19 , Severe Acute Respiratory Syndrome
6.
biorxiv; 2020.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2020.07.21.214759

ABSTRACT

Neutralizing antibodies elicited by prior infection or vaccination are likely to be key for future protection of individuals and populations against SARS-CoV-2. Moreover, passively administered antibodies are among the most promising therapeutic and prophylactic anti-SARS-CoV-2 agents. However, the degree to which SARS-CoV-2 will adapt to evade neutralizing antibodies is unclear. Using a recombinant chimeric VSV/SARS-CoV-2 reporter virus, we show that functional SARS-CoV-2 S protein variants with mutations in the receptor binding domain (RBD) and N-terminal domain that confer resistance to monoclonal antibodies or convalescent plasma can be readily selected. Notably, SARS-CoV-2 S variants that resist commonly elicited neutralizing antibodies are now present at low frequencies in circulating SARS-CoV-2 populations. Finally, the emergence of antibody-resistant SARS-CoV-2 variants that might limit the therapeutic usefulness of monoclonal antibodies can be mitigated by the use of antibody combinations that target distinct neutralizing epitopes.

7.
biorxiv; 2020.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2020.06.08.140871

ABSTRACT

The emergence of SARS-CoV-2 and the ensuing explosive epidemic of COVID19 disease has generated a need for assays to rapidly and conveniently measure the antiviral activity of SARS-CoV-2-specific antibodies. Here, we describe a collection of approaches based on SARS-CoV-2 spike-pseudotyped, single-cycle, replication-defective human immunodeficiency virus type-1 (HIV-1) and vesicular stomatitis virus (VSV), as well as a replication-competent VSV/SARS-CoV-2 chimeric virus. While each surrogate virus exhibited subtle differences in the sensitivity with which neutralizing activity was detected, the neutralizing activity of both convalescent plasma and human monoclonal antibodies measured using each virus correlated quantitatively with neutralizing activity measured using an authentic SARS-CoV-2 neutralization assay. The assays described herein are adaptable to high throughput and are useful tools in the evaluation of serologic immunity conferred by vaccination or prior SARS-CoV-2 infection, as well as the potency of convalescent plasma or human monoclonal antibodies.


Subject(s)
COVID-19 , HIV Infections
SELECTION OF CITATIONS
SEARCH DETAIL